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Abstract

Many computer programs cannot basily integratedbecausetheir components are
distributed and heterogeneous, i.ethey are implemented irdiverse programming
languages, use differedata representation formats, or their runtime environments are
incompatible. In many cases, programs are integrated by modifying their components or
interposing mechanismshat handle communication and conversion tasks. For
example, remote procedure call (RPC) helpgegrate heterogeneous, distributed
programs. When configuring such programmewever, mechanisms likePC must be
used explicitly by software developers in order imbegrate collections ofliverse
components. Eacbollection mayrequire a unique integration solution. This paper
describes improvements the concepts of softwar@ackaging [1] andsome of our
experiences in constructing complex softwasgstems from a wide variety of
components in different execution environments. Softywakaging is a procesbkat
automatically determines how fotegrate a diverse collection of computer programs
based orthe types of components involveahd thecapabilities of available translators
and adapters in an environmen&oftware packaging provides a contettiat relates
such mechanisms to softwargegrationprocessesnd reduceshe cost of configuring
applications whose componentsare distributed or implemented irdifferent
programming languages. Oswftwarepackaging tool subsumésaditional integration
tools like UNIX MAKE by providing a rule-based approactstdtwareintegration that is
independent of execution environments.
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1 Introduction

Most high-levelprogramming languaggsrovide functionand procedure call abstractions in ordéat

software developersan define their own operationsand reuse libraries of functions written by other
programmers.Use of afunction or procedure iseamlesgrom theviewpoint ofthe software developer
because a "call" is a language abstraction that is independent of any runtime environment, i.e., the use and
definition of a functionrdoesnot changeetweenenvironments. Such abstractions make programs more
reusableand portable to manyypes of executiornvironments regardless of their operataygtem and
hardware characteristics.

Even though functionsnay be defined in separate components such as fildiraries, tools like
compilersand link editors musintegrate these components. Integration is gtep-by-step process of
translating anccombining software componenitsto new components. For example, a piece of source
codecan be translated intubject code by aompilerand thencombined with libraries by Bnk editor to
produce an executabprogram. The resultingxecutableprogram defines auntime implementation of
the application for a specific machine and operating system. The tasks of trarssiditognbining these
components into progranmsay be different for eacbnvironment. Thelevelopemust invokethe proper
tools intheir propersequence to builthe application, but the componeai® the same regardless of the
environment. The cost of constructing compilers and link editors for each execution environoffeat is
by theability to integrate othesoftware across many environmeatsd amortizedover all the programs
written in the programming language.

The integration process is more difficult, however, if functions are implemented in different programming
languages or as remote services in a distributed system. While fuantigmocedure call abstractions

can be implemented by several mechanisms in such situations (e.g., pragmas, pipes, remote procedure call
(RPQ)), developersust often construghe additionakoftwarethat uses these mechanisiausd provides

a "bridge" between componentsThis additionalsoftware, such as remote procedure call stubs, is
expensive to developnd unlikely to be reused in other application€ode generators, such asub
compilers, can beised to produc¢he additionalsoftware automatically, but developearsust provide

interface specifications in such cases. As in homogeneous environments, develogtensvoke the

proper tools in order to integrate an application into an executable program, but this proness nsore

complex in heterogeneous applications.

The problem of integrating heterogeneous programs becomes critical as the need for software reuse grows.
By reusing existing programs in new designs,cag significantlyreduce development costs, but many

data representatiorend runtimeenvironments are incompatible without thee of "bridge" code. For
instance, the United States DepartmenbDefense estimatahat most of its 1.4 billion lines ofode is

used to pasdatabackandforth between incompatibland inconsistent applications [2]. Much of this
"bridge" code is redundant and highly-dependent on each system or execution environment.

This paperdescribes improvements to softwagrackaging concepts presented in §tjd some of our
experiencesegardinguse of softwargackaging in constructing compleeftware systems from w&ide
variety of components in different execution environments. Softyarkaging allowssoftware
developers to connecprograms together abstractly without explicit concern for reconciling
implementation differences. It allovadevelopers to explicitly deabith the logical structure, called the
architecture of a software system iterms of componen@nd theirconnections. Theoftware packager
then determinesutomatically which component implementations to asel how to implement the
connections in the architecture. It determines whether or not programs can be integgetedn the
types of components involvednd theavailable integratiortools, e.g., compilerslinkers, andstub
generators). If it is possible tntegrate the componenthien the packager determines whtobls are
needed, how to apply them, and the proper sequence of their application.



The software packager determines howiritegratesoftware components based their implementation
types Implementatiortypesare based on characteristics likeogramming language, entry points, and
other data andontrol properties. Sudypesare independent of the dataahject typesupported by an
implementation. Current integration methods reqtirat developers informally knowvhat types of
componentsre compatible,their interconnectionsiow toimplement the interconnectionand how to
integrate the components in eagkecution environment. For example, file extensions (eg,,.0 ,
.exe ) areused to designate crude implementatigres. The software packager relies orriaher set of
implementatiortypes tohelp encapsulate componefis improved reus@nd integration. ldetermines

if components are compatible and how to integrate them based on their types and interconnections.

Softwarepackaging requiresnly that thedeveloper know about components, calleddules and their
interconnections in software designsEach module must have at least one or more associated
implementations. Theoftware packagethooses compatiblenplementations for each component and
relies on a set of production rules in each environment to deterimine to implement the
interconnectionand integrate thelifferent types of componentsThe production rules are unique for
each environmenand arebased ornthe set of availabléools. In most environments, toodse used
informally by programmers. Production ruldspwever, formally characterizéhe use of tools in
integrationprocesses.The cost ofconstructing the production rules is balanced byathibity to port the
applications to other environmengnd amortized over all applicationspackaged in theexecution
environment.

Software packaging reduceshe cost of integrating software systemavhen compared to existing
configuration methods such &NIX MAKE and similartools. Using thesé&raditionaltools, developers

must explicitly specify the process of integrating computer programs. If a program is reconfigured but the
logical structure is unchangeithen the integratioprocess may baltered. For example, if a component

is reconfigured as a set of remote procedures, it will proba&lojyire changes to the integratiprocess.
Reconfiguring a systermcludes such tasks as movingsgstem toanother computing environment,
distributing components on processing elements, and implementing components in different programming
languages. Such changes strongly impagt a system istegrated. Theoftware packager reduces the
impact of reconfigurations by providing a high-level approach to integr&tioa set of programs and
processors, much like a compiler does for a single program and machine.

Previousintegration techniquefocus onintegration mechanisms like remote procedure callthey do
not address the relationship between the tools and their use in integratieasesWith tools alone, the
developermust still specify how tointegrate an application explicitly. Trdevelopermust alternate
betweerabstractiorand implementationconnecting components together in a logical strucin then
implementing those connections via different integration mechanisBwftware packaging leverages
integrationtools automatically to deriventegrationprocesses based ahe architecture of application
solutions. Developers deal onlith this logical architecture. This results in fastievelopment and
allows developers to deal with the architecture of a system in a seamless fashion.

1.1 Integrating a Heterogeneous Application

Suppose our task is to develop a factajgblication by integrating existirgpurce components written in
different programming languages. The application is modularizedvimtocomponents: a Driver module
for dealing with input/outpuand aFactorial moduleéhatimplements a fact function. One solutibased
on this design ishown in thesource code ifrigures land 2. Thiscode consists of Briver component
implemented in thEORTRAN programming language andractorial component implemented in the C
programming language. The Driver component relies onfeenh  function that is external to its
definition. The Factorial component implement§aet function. The Driver invocation dfact
sends an integer as an argumamnd expects arinteger in return. The Factoriabmponent provides a
similar interface except that the nanfi@st andifact are not identical.



n=>5

nresult = ifact(n)

write(*,*) "The factorial of ",n," is ",nresult
end

Figure 1: FORTRAN implementation of the Driver component (in file driver.f)

fact(x)
int x;

if (x <=1) return 1;
else return (x * fact(x-1));

}

Figure 2: C implementation of the Factorial component (in file factorial.c)

While thetwo programs areompatible relative tthe semanticand arguments of theinterfaces, their
implementations are incompatible. The majmoblem is that the FORTRAN and C runtime
environments are different several wayse.g.,they represersgtrings anchumbers differenthand have
different function call semantics. Such incompatibilities carrdm®nciled by introducing additional
software to bridge the gap between the two implementations and their runtime environments.

There may be severalvays tointegrate heterogeneous programs in an execution environment. For
example, in our environment we can integrateRBRTRAN and Cimplementations by first translating

the FORTRAN codento C using thd2c tool [3]. Inaddition, we must adapt the resultiogdewith a
wrapper becausdghe arguments tdact are called byeference as a result tife f2¢c translation. A
wrapper is additionatodethat isused to transform, convernd bridge runtimedifferencesand data
representations. In thesase, the function call ifact is implemented by a procedure call mechanism
that operates through the wrapper needed to link téatte function.

Figure 4 illustrates thsteps necessary totegrate the components of our factorial program. froeess

is shown as gartial order taeflectthe dependencidsetweenintegration steps Assumethe FORTRAN

and Ccode showrabovearestored in thdiles driver.f andfactorial.c respectively. First, the
FORTRAN code is translated in C by tt2e tool and stored in the filériver.c  (a). Next, the wrapper

code must be supplied. In most cases, wrappes written by thedeveloper or generated from
specifications written in an interface definition language. We will deal with wrapper generation in a later
section. In this case, the wrapper fileapper.c  is supplied and contains the code

int
ifact_(x)
int x;
{
return fact(*x);
}

that describes a C functidgfact_  thatinvokesthefact function with a value parametet.his code is
needed to adaphe call from the translatdelORTRAN code. The suffix " " onthe name of the wrapper
function is necessary becaube translator adds thfer all FORTRANfunction calls. This wrappetiso
handles the namingonflict betweernthe use ofifact and thedefinition of thefact function name.
Softwarepackagingviews wrapper production as a form of backpatching in heterogeneous, distributed
environments and relies on separate tools to produce such code.
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Figure 3: Integrating FORTRAN and C implementations

Next, thefiles driver.c , factorial.c , andwrapper.c  are thencompiled to producéhe object
files driver.o , factorial.o , andwrapper.o  (b). Finally, theobject code isinked together with
the FORTRAN and C run-time libraries tproduce an executabpgogram in thefile a.out (c). The
user can then run the program to produce the desired output:

% a.out
The factorial of 5 is 120.
%

This process represents one possibigy of integrating the application into aexecutableprogram.
Depending on thaools in anenvironment, therenay be many differenalternatives. We havased
software packaging in this fashion to integrate madifferent types ofapplications consisting of
heterogeneous components including C, C++, FORTRAN, Lisp, ISETL, Tk/Tcl and Ada.

2 Software Packaging

The behavior of any solution to the factonmbblem should be independenthaiw weimplement the
applicationand each component with an application. The integrapoocess, however, is highly
dependent on what implementations $oftware componentwe available. While each component relies

on functional abstraction to isolate itself from such decisions, different implementations of each
component will influence howthe function call abstraction is implemented. In hgemeous
programming environments, call abstractions permit seamless integoatiwaen componentsecause

the abstractions are an integgadrt of the language and runtime environment. héterogeneous
environments, thesoftware packager providethe same transparencior multiple-language and
distributed applications by determinirtgpow to integrate diverse componentgsed onthe types of
components and the available integration tools.

The software packager accept®dular descriptions of applications as inpotigenerates a packagfeat
implements the givesystem in an executioenvironment. For example, thmodule structure of the
factorial programand itsspecification inthe FACKAGE language is shown in Figure 4. We describe the
details of the RckAGE specification language in Section 6. Given a descriptidheofmodular structure

of an applicationrand theimplementations for each componetite packager generates a packtdgs

includes the code, wrappers, and integration steps necessary to build an implementation of the application.
The software packageladapts components;hooses compatiblemplementations,and selects the
appropriate tools needed to integrate a system of components.

Given the RcKAGE specification of the architecture of a system including all possible implementations for
all modules, thesoftware packager determindise steps necessary totegrate an application in an
execution environment. Each environmenprovides production ruleshat characterize thabstract



define

_ fact _
Driver ﬁ Factorial
use
ifact

include stdpkg.pkg
module Driver {
use ifact(int)(int);

module Factorial {
def fact(int)(int);

implement Root as {
Driver: x;
Factorial: y;
bind x'ifact to y'fact;

implement Driver with fmain {
FILE=driver.f

implement Factorial with cfunc {
FILE=factorial.c
}

Figure 4: Modular architecture anddXAGE specification of the factorial solution

integrations the arpossible inthat environment. These rules are reused by many applications in an
environment. Theleveloper supplies onlyie modular description of a prograandimplementations of
the components. The packagesesthe production rules in each environment to deternhioe to
integrate these implementations based on their types and interconnections.

The major advantage dfoftware packaging lies in its ability to determingme integrationsteps
automatically for software products after reconfiguratioBgisting methods require extensive changes to
configuration programs (e.gMAKEFILES) after application componentse added, reimplemented, or
distributed. In a later section, we compaoftwarepackaging with existing methoddNIX MAKE and
remote procedure call, ®howthat reconfigurations are moreasily accommodatethrough theuse of
PACKAGE specifications.

3 Problems

There are many reasonghy differencesexist between software componertsat make integration
difficult. Here, we outlinghe reasonghy interconnectionetween heterogeneous systarsdesirable

but difficult to achieve because tifeir implementatiordifferences. Our solution to thes@roblems is
motivated primarily by theeconomic need to reuse existing software in regsstems despit¢heir
implementation differences. A high-level, modusaftware desigrtan be reused in differecbntexts
regardless of howts componentand theirconnections are implemented. Wabftwarepackaging, an
application can be integrated usisgveral different technologies. Softwgnrackagingdoesnot dictate a

single integration mechanism (e.g., RPC), but uses existing technologies to implement interconnections in
architectures in orddhat developerscanfocus on how tcstructure their application instead lwbw to
interconnect the components in a variety of environments.



Legacy Code and System®Id systemanust coexist with newystems because it would cost toach in
many cases to upgra@d components in a collection simultaneously. An existing program cannot be
discarded simply becaussother program is installedNew programs must be compatible with existing
systems orthe new methods must be adopted incrementallyabgpting the oldsystem or gradually
convertingit. Furthermore, existingatabaseandfiles maynot be compatible witimew programs. For
these reasons, many programs are designed badlevard-compatible to avoid isolating existing users.
Even when a newystem isintroduced, oldsystems mayemainfor long periods of timeuntil they are
upgraded. In many cases, service must be provided continuously even while upgrades are in progress.

Coupling between Software ComponenBesidedata representatioconflicts, computer programedso
differ because they depend on different execution contexts. For exanpptggram thauses one set of
interrupt signals to control itexecution cannot be combinedtime same addrespace with grogram
thatusesthe same signaf®r other reasons. Ithis case, the programs mustecute in separate address
spaces withtheir own interrupt vectors. Such programare coupled to specific execution contexts
external to their implementation, i.dhey depend on specifimintime environments. By definition,
coupling reduces software reusedther contexts. Coupled programan be adapted toew contexts
(e.g., SunView programsan rununder Xwindowswith minor source codehangesand theuse of the
XView library), but this is rare andexpensive to implement. lis, however, an alternative to
reimplementation.

Specialization of Languages and SystemSomputers, languageand protocols are specialized for
problem domains. Numeric problemsay best be solved in FORTRAMther thanLISP. We must
recognizehatcomputer system$anguages, angrotocols will continue to be specialized. Specialization
is necessary because it allows developers to construct solutitersnisi convenient to specific problem
domain. However, problems decomposgo subproblems in several domains. Designing an airfoil, for
example, mayequire a computer-aided design (CAD) progranmwali as a finite-element processing
program. We musillow developers to ushe toolsthat aremost appropriate ttheir problem domains
and find ways to integrate the diverse solutions to their subproblems.

Data ManagementCertain representations of informatioray be accessed fastéian others. A list of

names anghone numbermay be alphabetized for quick accesshbynansput an operator may need a

list ordered by phone number®eopleandoperators require differefiviews" of the same information.

Many programs store information in different formatsataessheir view of the data,but this limits
exchanging the information with other programs tieate different views.The information can exist as

copies in separate views, but keeping the separate copies consistent if changes occur is a difficult problem.
Developersmust balance théradeoffs between efficiencgnd consistency control whedesigning a

system.

Efficiency of Executian Even thougtcomplete portability of source code desirable, it is unrealistic
given that different hardwareand operatingsystem platformsoffer different performanceand that
different solutions to a problem may need to tradeoff performanceotf@r factors (e.g., space,
functionality). Thus, different implementations must ettistt have different performance characteristics
due to the tradeoffs inherent in the overall system design.

Distribution of Components The trend in modern computsystems is towardecentralizationlUsers
now have powerful processing capabilitiesttair personabisposal at reasonable prices. The lack of
central controbver computing resources, howevieas resulted in thdevelopment of divergerslystems
with their own languagesndprotocols. The existence of legacy systerand theneed forefficiency and
specialization hasreated enormous differences between systems. Distributed computer systeives
connected via many technologiaad thischoice impactghe performancend reliability of the final
system. The locationand access tdnformation services in suchystemsare importantdecisions for
designers who must accommodate these configuration constraints.



Softwarepackaging allowslevelopers to combine software componevith different implementations.
Although such differencesiustbe reconciled in some fashion ander to integrate the components, the
software packager determinadat bridgesare needed based athe types of components.For each
execution environment, a set of production rules desthibé&/pes ofintegrations possible Thus, it is
possible tointegrate componentsnly if the propertools exist. Giverthe propertools, the details of
integrations are hidden from the developer.

4 Concepts

Despite the differences between software systems, praigyams can be integrated if the profwes are
available. Each step of the integration process involves the use of tools like cortipilers, converters,
wrapperand stub generators. Such toase used to integrate a given setgsafftware components (e.g.
source files)nto a final product (e.g., aexecutable file). Thetools in an executioenvironment define
the types oflegal integrationprocesses ithat environment. Softwarepackaging allowslevelopers to
determine the integration processes automatically based on the types of components in an application.

Like the factorial program, mangoftware applications have a logical structure of componats is
independent dfiow each component is implementtthow the application is integrated. For example,
Figure 5 depicts a hammodyraph called aproduction graphfor the factorial program given the
FORTRANand Cimplementations for each componenthe left side ofthe hammoclgraphdepicts the
application as a composition of Drivand Factorial modules.This side of a productiograph iscalled

the software structure graphImplementations arghown as descendants of a module (shown as rounded
rectangles). The entire applicatitself is characterized as a module, callieelRootmodule, as well as

its components. At the leaf nodes of the structure graph are primitive implementations (e.gca&m®)rce
These represent implementations that cannot be further subdivitiedrightside of the hammocgraph
depictsthe integration of the implementations into executableprogram. Thisside is called the
software manufacture graptEach node in the manufacture graph represents a translation or combination
of components using the tools available in an environment.

Given the software structuregraph asspecified inthe RACKAGE language, thesoftware packager
automatically constructs theoftware manufacturgraph. Thesoftware structurgraph isspecified in a

textual specification language callgte FACKAGE specification language lilie developer asput to the

software packager.The packager then determines the manufaajuaph (if possible)and produces a
"program” thatbuilds the application fronselected primitive implementations pfogram components.
The program, actually a UNIMAKEFILE, iS unique to each target execution environment.

The packager determines thaftware manufacturgraphbased on production ruléisat characterize the
abstractsoftware manufacturgraphs in an environment. The approach is similar to attribute grammars
for a programming languagexceptthat thepackager uses an inferenciafgorithm on the production
rules to resolve which implementatioase compatibleand how to buildthe targetobject. Although the

rules are complex to construct, they are intended to package many applications in a single environment.

5 Software Structures

Regardless of howhe factorial application is integrated, its architecture remains the same as shown in
Figure 4. Programmergho must maintairsoftware products implicitly refer tthve architecture to orient
themselves witlthe layout of a product.This section describes a technique for specifying such structures
which are explicit and independent of particular execution environments.

One canspecify acomputer program in many formdviost programs areomprised of files, statements,
functions, variablesand othecomponents. These components depend on eachavitig¢heirexecution
is sequenced in some fashion so that the overall program has the desired behavior. Each component relies
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Figure 5: A software production graph for the factorial application

on resources defined by other componefitse structure of an application includes a description of each
component and the dependencies between them.

One major problem is how &pecify acomponent in ananner that is independentasfy implementation
[5] [6] [7]. Often, it is impossible to completely separate specificatimhimplementatiofrom asystem
perspective. We present an approach to descriwftgvare structures, callesfructure graphsthat can
be used to describe many levels of design: from gross structures to statement-level corgiftvesse
structure graphs arbased on MILs [8], but differ from previous efforts that our structures are
hierarchical, componenteay havemultiple implementationsndattributesand constraints are managed
in software structurgraphs much like in attribute grammars. Thil®ws for selection of compatible
implementations based on their types and other properties.

5.1 Modules

We viewany softwareartifact as a module --- lalack-boxcharacterizeanly by the specified behavior of

its interface. An interface is a collection of portsavannels on whichmessagesare received or
generated. Ports represent resources implemented by a module: function calls, events, or input-output
streams. Within anodule, but hidden from the outside, is an implementationmoflule may have

several implementations but only one may be "insidettbéule at a time. For example, a program with

the same input-output behavior can be written in two different programming languages. From the outside,
it doesnot matter which implementation is chosen, but its behavior should be consistent with its interface
specification.

5.2 Choice

Portable software products often have multiple implementatioritkedf components tdandle special
cases, i.e., different device drivers may be configured depending on the target platformwdrstioase,
a different implementation of the entire program must be Hoildeachtarget platform. Choosing the
appropriate implementations depends on the target platforifferences between component
implementations can be large or small. A singpeirce file mayepresent multiple implementations
because it may be compiled differentigpending on the target platform. For example, #ificef
macro in C is used frequently to compile alternatiagts ofsource codaelepending on a configuration
context.



Choice is a fundamental constructor in lasgétware structures. Even a simplgta abstractiomay have
multiple implementations. For example, the Map dgfee (i.e., associative arrays) ithe GNU C++
library has the following implementations:

AVLMap implement maps via threaded AVL trees
RAVLMap implement as AVL trees with ranking
SplayMap implement maps via splay trees

VHMap implement maps via hash tables

CHMap implement maps via chained hash tables

These implementations aspecified as subclasses tbe class Map, butheir interfaces are identical.
Such relationshipbetweenabstract classes like Mamnd itssubclasses occur in object-oriented systems
that do notseparate subtypingnd subclassing [9]. Asubtyperefines an interface whereas a subclass
represents an alternative implementation. Module-oriented programming distindugshiesnthe two
concepts byeparating interfacesnd implementationsand providing for implementation choicesithin
software structures.

The choice of an implementation for any module is based on a variety of fanttrding the required
performance of operations, storage overhead, and data representation strategy. An implementation chosen
for one part of a system mayconstrain implementatiorchoices in other parts of thesystem.
Implementations areompatible relative to such constraints. For example, choice of an implementation
using dynamically allocatiomay mean that alcomponents must ugshe samememory management

style.
5.3 Composition

Another fundamental constructor $oftware structures is composition. Groups of modategonnected
together because they define and use shared resources. For example, the factorial solution in Figure 4 is a
composition of two modulenstances: an instance of the Driveoduleand an instance of theactorial
module. Composition is an implicit operation in most programnsggtems. Mosprogramming
languages bind usesmddefinitions of resources togethertlifeir names are theame By-namebinding).
Use of aresource implieshat thecomponent defining theesource must be integrated inb@ product at
somepoint. Linker/loaders assimilate components by matchses to definitions.Our use of explicit
module interfacesind bindings inecessary in cases whéandegration requires moreomplex bridges
between components.This is particularly true inheterogeneous, distributez/stems where remote
procedure call (RPC) stubs or otligpoes oflinks must be generated to integrate componentsrdime.
Strict encapsulation permits our packaging system to wrap components in hew contexts as needed.

5.4 Software Structure Graphs

We combine choiceand compositionwithin a framework for constructing descriptions sbftware
products callegsoftware structure grapher simply "structuregraphs.” A structure graph isdirected
(possibly cyclic)graphwhose rootrepresents a software prodwstid its alternativémplementations at
many levels. Therare two types of modulamplementations within a structure graptomposite
implementationsand primitive implementations. Within a graph, alternatives represebsystem
implementations. At thieaves othe graph are primitive implementations (espurce codeprograms,
services, etc.). A structugraph is similar to amMAND-OR graph. The children of theoot module
represent implementation alternati{€R nodes).Each alternative is either@mposite implementation
(AND node) or a primitive implementation (P nod&hus, a structure graph is a hierarchidescription
of an application, itsubsystemsand alternatémplementations. A structure graph is ndreebecause
there may besharing atlevels ofthe graph anccyclesinvolving recursive implementations (i.e., a
subsystem implementing a Factorial module may itself include an instance of itself).
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The leaf nodes of a structurgraph arecalled "primitive" because they correspond to native
implementations of modules in an environmémat cannot béroken downfurther into subsystems.
Typically, primitive implementations correspond to souccele files, but may alspepresent services,
tools, data, orany softwareartifact or collection of artifacts Software structurgraphs do not limit the
developer to one-to-ormaapping to filesrather multiplefiles could be associated with a single primitive
implementation or a single file could be associated with multiple primitive implementations.

Figure 6 represents a structugeaphfor the factorial example in which the servess an additional
implementation: a remote service. Rectangles represent module instances, open circles represent
compositionsand ellipses represent primitive implementations. this case, each moduleasonly one

instance in the structure graph. In generahaule's implementation subgraplcapied belowwherever

an instance of thenodule occurs.The structure graptepresents all alternativésr componentsvithin

the application. In the factorial example, the Drimaodule hasone primitive implementation --- the
FORTRAN implementation. In Figure 6, the Factonabdulehastwo possiblemplementations: the C
implementation and the remote implementation.

The structure graplprovides developersith an explicit model for constructing, viewing, and
maintaining alternative versions of software systant theiimplementations. Alsoftware components
are"black boxes'thatmay have one or moieplementations. Theoftware packager uses environment-
specific rules to choose compatible implementations for components within a structure graph.

The softwarepackaging specification language isnadule interconnection languagMIL) that allows
programmers to describe software structures in terms of chamckompositions of software modules. A
module specification describdéise resources providedndused by a software componerithis is more
general that ambject-oriented approadhat describes software components onlyténms ofresources
they provide. For exampléhe interface of a staakbjectis typically described as providirtgreebasic
functions: push pop top. Figure7 depicts a generic stack module witie same interface, but we
associate twoimplementations with the stack module. These implementations camgosite
implementations consisting of other module instanca@e external ports of the stackodule are
connected to ports d@fternalmodules. This technique, calledliasing, represents the bridgégtween
higher andlower level abstractions irthe architecture of asystem. For example, a composite
implementation includes instances of ArrayStaakl Array modulesthat implemenstacks using arrays
while the other implementation includes instances of ListSaacl_ist modulesthat implementstacks
using linked lists. The graph for the stack module and its implementations are shown i8Figure

6 The Package Specification Language

This section is designed to be referenoanual thatdescribesthe syntactic units for the RACKAGE
specification language. The RACKAGE language is used to descrilseftware structuregraphs for
applications. The A&KAGE language is a module interconnection language (MIL) in whkiftware
componentsare described asinits (eitherprocesses or statimde)that provide and use resources. An
application contains instantiations of modules and connections between resources uses and definitions.

A PACKAGE specification describethe software structurggraph for an application. A specification
describes a directed, rooted graph (possibly cyclic) whose root node reptiesemtsre application. Each
PAacKAGE specificationmust describe at least one implementation foe application either as of a
collection of components (a compositeplementation) or a singlebject (aprimitive implementation).
The nameRoot is a distinguished lexical identifier within aadKAGE specification. At least one
implementation fothe Root must be expressed in adRAGE specification. Each direct descendent of
the root node represents an alternative implementation of the application itself. The sgragbrés
elaborated by describing thsubcomponentstheir implementations,and connections within an
application.
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Figure 6: A software structure graph for the factorial product
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include stdpkg.pkg;
module Driver {
use ifact(int)(int);

module Factorial {
def fact(int)(int);

implement Root as {
Driver: x;
Factorial: y;
bind x'ifact to y'fact;

implement Driver with fmain {
FILE=driver.f

implement Factorial with cfunc {
FILE=factorial.c

implement Factorial with rpcsvce {
NUMBER=5678
HOST=A

}

Figure 9: A Package specification for the factorial problem with two possible implementations of the
Factorial module

Figure 9 shows aARKAGE specificatiorthatdescribeshe factorial application structugraphconsisting

of instances of the Driveland Factorial modules. The Factoriahodule has two associated
implementations --- one in @nd the other is e&mote service.The correspondingoftware structure
graph is shown in Figure 6. The specification is comprised of six syntaxticdeclared at global level:

a compositeimplementation forthe Root module, an interface description for a Driver module, an
interface description for a Factorial module, a single primitive implementatigchéddrivermodule and
two primitive implementations fothe Factorial module. 22KAGE specifications typically consist of a
series of declarations of modules and their implementations.

Modules may havenultiple associated implementatiotigat are eithecomposite omprimitive. Unlike
INTERCOL [27] and theprevious version ofhe software packager [1], instances of modulgthin
composite implementations ahmt need tespecifywhich implementation should be used. Tdmice is
determined by the packagm®mol. The RACKAGE specification enumeratedl possible implementations of
moduleswithin an application as a subgraph ahadule instance.Tools like NMAKE rely onthe UNIX
file system to specify choices afplementations in a similar fashiobut a RACKAGE specification
explicitly describes this structure without attaching choices to particular file systems.

6.1 Modules

The Driverand Factorial module interfacesre declaredeforethe Root compositémplementation in

Figure 9 but they could be declared anywhere in the specification. The packager uses a two-pass approach
to build thesoftware structurgraphfrom these specifications sbat modulescan be instantiatebefore

their declaration. The Drivanodule interface consists of a single "use" port representing a function call

to an external resource namddct . The Factoriaimodule interface consists of a singbef" port

providing a function resource namizatt

While a module may have multiple implementations, it may only have one interface desciijtidules
are uniquely identified by their name and parameter types. A module declaration is of the form
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module identifier ( parameters ) : ancestors {
ports
attributes

}

whereidentifier3 is the name of thmodule typeparameterss a comma-separated list of variable names
andancestords a comma-separated list of module namadule parametersiay be referencedithin

the body ofthe module specification. They expanddtying or numeriozalues inthe sameamanner as
attribute references. Module ancestors refer to modules from which a nrdlriés attributesndports

in a fashion similar to inheritance object-oriented languages exc#pis style ofinheritance isnvolves
only the interface not the implementations of the ancestor modules.

Ports within a module are distinguish by their naared parametetypes. Porhamesmay be overloaded
with different parametetypes. Portandattributes are explained in a lat®ctions. If a moduleas no
ports or attributes, it may be declared as

module identifier ( parameters )

The Root module is the only module not specified in a package. It has the implicit declaration

module Root;

that ispredeclared in the standard package header which is included vizlide directive. The
Root module may have default porend attributes, but thesare usually specific to an execution
environment.

6.2 Ports

Ports are associated with modulesrstantiating them within enodule declaration. In our example, the
Driver modulehas a singléuse" portand theFactorial modulehas a singlédef" port. A "use" port
represents a function calhat expects a single value ireturn. A "def" port represents a function
implementation. Thermay be manyypes ofports including sources, sinkand errors. A port instance
within a module declaration is of the form

('min, max yorttype identifier ( pathl) ... ( pathn) : attributes

whereidentifier is ause, def , src , snk, err or any other user-defined pdype. The min and max

are the minimum and maximum numbercohnectorghat may beattached to this port. The minimum
and maximunvaluesare used to place constraints on connectionartd from a port. For example, a
"use" portcanonly be connected once singiltiple connectionsvould imply a broadcast procedusall.
Ports oftype "def", however, mapave an unlimited number of incoming connections corresponding to
procedure invocations. Thuath specifications of a port declaration descititbetypes of messages on the
resource. Apath is asequence of message tyghatinclude primitivetypes(integers, stringsfloats),
other module names, or static data structures known as classes.

Module ports may also have associatdttibutes. Thisallows the assignment of arbitrary string and
numeric values tdkeyed names on ports. For exampkome workhas been done to explore the
association of semantic information with module porthis information is lateused to check for port
compatibility during the packaging process using external toth& packageitself is not responsible for

SRequired syntax is show in boldface. Non-terminals are shown in italics. Thus, optional syntax is shown
in non-bold and non-bold italics.
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determining thesyntactic or semantic compatibility of interface port bindings, fatler it invokes
external tools as part of the packaging and integration processes.

Datatype names in module port declarations (eigt, , real , str , etc.) are nopart of the RCKAGE
specification language. Port compatibility decisioegardingtype checking, semanticsand other
integrationchecksare made during the packagipgpcess byexternal tools. The software packager is a
framework for organizing such work, but does not dictate any data type names or representation formats.

6.3 Port Types

Porttypesare declared at thglobal level. A portype is apatternspecifying a legaport type. Default
porttypesaredefined inthe standard package headstdpkg.pkg ). In general a potype declaration
is of the form

port identifier (argument_type ) ... (argument_type ) {
attributes

}
For example, the "use" and "def" port types are declared in the standard package header as

port use(...)(?);
port def(...)(?);

where the ellipses imply that both port types take any nuar#types ofarguments. The questionark
means thabothreturnonly one value of any type asr@sult. Both ports associated withe Driver and
Factorial modules in our example are legal instances of their port types.

6.4 Composite Implementations

Modules may havemultiple associated implementations. Then® two types ofimplementations:
compositesand primitives. A compositémplementation describes a collection of module instances and
their connections. The implementation Bbot in our example is a composiiemplementation. A
composite implementation is a circuit-board diagram @bnnected modules: it describes the
subcomponentand the "wiring"betweentheir portsthat comprise an implementation for a module. It
represents gubsystem becausbe instances within aomposite also have associated implementations,
but theseare notvisible atthis level of abstraction.Each instance isimply a black box. Imgeneral, a
composite implementation is of the form

name:implement identifier (formals )as ancestorq
instances
connections

}

whereidentifier is the name of themodule typg(formal parameters must match as well),iimtanceis a
declaration of a module instanaad aconnectionis a linkbetween aingle port or groups of ports. The
connections within @ompositeimplementation describbBow to wirethe ports of themodule instances
together. The designer is not constrained to wire mowsby-one. There are constructsr performing
connections by patterand porttype. The formancestorss a comma-separated list of implementation
names. Acompositeimplementationmay includethe instancesand connections from other named
composite implementationsThis allows forthe inheritance ofomposite implementations separate from
the subtyping of module interface descriptions.
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Instances withircomposite implementatiorare specifiedwith an instance name amday haveattached
attributes. The form of an instance description is

modulename identifierl dimensions: attributes , .identifiern dimensions : attributes

wheremodulenameis the name of enoduleandeachidentifier is the assigned name of an instance. All
module names must be defineden if a moduldas a nulinterface (e.g.Root). Arrays of modules may

be declared with multiple dimensions. Attributes canabsociated with individual instances. These
attribute assignments are scoped on the subgraph below the instance, not the entire composite subgraph.

In our example specification in Figuret8e Rootimplementation is thenly compositamplementation.
It contains two instances: one instance of the Driweduleand another instance of tRactorial module.
Within the Root implementation, the instances of the Drivaard Factorial modulesare assigned the

names "X" and "y" respectively. Thend statement

bind x'ifact to y'fact;

specifiesthat theifact  port of the Driver instance "Xx" isonnected tdhe fact port of the Factorial
instance'y". Compositeimplementations for moduldgbat have ports (unlikéroot inthis case) may use
the bind directive to connect ports ofternal instances to the external port$zor example, the

specification

implement Stack as {
ArrayStack astack;
Array a;
bind 'top to astack'top;
bind 'push to astack'push;
bind 'pop to astack'pop;
bind astack'get to a'get;
bind astack'put to a'put;

}

describes a stack module compositplementation comprised of an ArrayStack instaand anarray
instance. The alias directives connect inner ports to outer ports within a composite. The specification

implement Stack as {
ArrayStack astack;
Array a;
bind ** to *'$2;

}

is equivalent to the previous specification but emplogkathand notatiofor connecting groups of ports
instead of individually. The connecting phrase

bind ** to *'$2;

is a "cliché" forbinding ports by name. This phrase is equivalent to name-bikltigs employed by
manylink editors. Connections within packagispecificationsarechecked to ensurthat theconnection
constraints on ports are within their limits.

Composite implementations of modules represent subclass implementations of embedded module instance.
Unlike object-oriented languages like++ [11], thesubtypingandsubclassing in &KAGE specifications
are separate. While this haeme disadvantages, such as performance, it totally encapsdéteare
modulesand theirimplementations to promotieir reuse in many contexts. The CONs$gstem [34]
takes a similar approach to separatgbtyping and subclassing but doesot employ multiple
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implementations. ThRESOLVEprogramming language [#¢Jmploysthe same separatiand multiple
implementations, but implementatioase allcoded in RESOLVEand distinguished bgerformance and
space characteristics.

6.5 Primitive Implementations

Modules may also have associaf@imitive implementations. Primitive implementations ditferent
from composite implementatiorisecause they refer toeative objectsthat implement anodule, not a
subsystem of modulmstancesand bindings. Irour example, the Drivemodule is implemented by a
fmain object and the Factorial module is implemented kgfunc and rpcsvc  objects. The
specification of a primitive implementation has the form

implement identifier ( parameters ith impltype{
attributes

}

whereidentifier is a modulename andmpltypeis an implementatioobject type. The attributes assign
string or numeriocvalues to named variables. Implementatidiject typesare declared in the standard
header as

object identifier : ancestors {
attributes

}

whereidentifier is the name of the implementatiobject type(e.g.,fmain , cfunc , rpcsvc ) and the
attributes set default valuegthin primitive implementations of thebject type. Object types may also
have ancestorthat define additional attributes.Object typeattributes describe component parameters
such as source file names, tools, data files, etc. Details on object typasiamadtributes ardescribed in

a later section.

6.6 Connectors

Thebind...to operation is not a primitive in thes€KAGE language, rather it is an instance dfean
connector} type. A connectanstantiates arobjectsimilar to amodule instance.The bind...to
connector is declared in the standard header as

connector bind(use)to(def);

Connectors are first-clasbjects inthe Package specification language. Conneataaty beprimitive or
composite. The bind...to connector is an example of a primitive connector. In general, connectors
may includeadditional module instancesd subconnections to implementparticular connection. The
form for a connector type declaration is

connector  opname( srcname ) midnamé dstname Y
instances
connections

}

where theopnameis the connector operation name (e.g., bind),nidnameis the middle operation
name (e.g., to)and srcnameand dstnameare thesourceand sink portype names (e.g., use, def). A
composite connector isimilar to a compositeimplementation and can contaembedded module
instancesand connections. The instancemd connectorsare expanded inline into theomposite
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implementation calling the connector. This metirad connectors may only hawngle implementations
and do not form subgraphs in the structure graph.

6.7 Attributes

All syntactic units in RCKAGE specifications, including modules, ports, implementatians,connectors,

may have associatedtributes. An attributenay be assigned a valtieat is a string or numerialue, a

set or list. For example, the FILE attribute of the Driver primitive implementation in the factorial
specificationhas the stringralue "driver.f" that specifiesthe file name of the component. THELE
attribute illustrates théact that object typesneed not be associate one-to-one with files,nbay have
attributes that reference multiple files.

Attributes aredereferenced usinthe $6amég construct similar tahat used in tools likevake. Unlike
MAKE, however, whosattributes areisible at a single lexical level, package attribiaesscoped on the
software structurgraph not on thdexical structure of the A2KAGE specification. This means that an
attribute X declared in &oot compositemplementationbody can beaccessedising $(X) in any
composite or primitivamplementation thabecomes arode in thesoftware structurgraph below the
Root implementation.

Attribute valuesare evaluated on-demandThis allows attribute values tohange during the packaging
process as alternative implementatianschosen in the structugraph. Suclthoices maympact other
parts of a configuration. The approach is similar to uke ofinherited andsynthesized attributes in
attribute grammars. Scoping attribute declarations on the structure graph is similaude tfieherited
attributes except that one does not have to explihcifythe direct inheritance at eatdvel. Likewise,
attributes can bsynthesized from module instancgghin composite implementationssing theform
$X(Y) where X is the name ofraodule instancand Y is theattribute within X'scomposite or primitive
implementations. If a module instancas multiple implementations, then thalue ofthe synthesized
attribute is the concatenation of the remaining viable candidates.

For example, if we added the temRiLE=$y(FILE) to the compositeimplementation of theRoot
module in our factorial package in Figure 9 to yield

implement Root as {

Driver: X;
Factorial: vy;
FILE=$y(FILE);
}
then theFILE within theRootimplementatiorwould havethe value ‘factorial.c " at the onset of the

packaging procesand avalue ™ (i.e.,the emptystring) at theconclusion of the packagimgocess if the
cfunc implementation alternative is eliminatdubcausethe packagerdecided to usdhe rpcsvc
implementation instead.

In this case, thealue ofthe Rootattribute FILEmaynot beaccessed ithe declaration of FILE attributes
within composite and primitive implementations below the Root because this would introduce a circularity
into the evaluation of attributealueswithin the software structurgraph. It ispossible to determine the
presence of such circularities within attribigeammars and wdéave adoptedhis approach in the
implementation of the software packager.
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6.8 Constraints

Syntactic units within RACKAGE specifications may alscontain constraints. Constraintesemble
attributes: theyarescoped onhe structure graph. If an attribute assignmariates a constraint dbme
higher level in the structure graph, that unit is not expanded. For example, ikckaesP specification

implement Root as {
MACHINE == sun
Driver: X;
Factorial: v;
bind ** to *'$2;

implement Driver with fmain {
MACHINE = sun
FILE = driver_sun.f

implement Driver with fmain {
MACHINE = dec
FILE = driver_dec.f

}

the second primitive Driver module implementation is not expanded as a candidate implementation of the
Driver module instance ithe Root composite because it violatée higher constraint in the structure
graph. The form of a constraint is

label :: identifier relop expression

where thdabelis optional,identifier is an attribute nameglopis a relational operator (e.g., ==), and the
expressionyields astring, numeric, set, or listalue. Constraintsnay be labeled or unlabeled. Only
labeled constraintsan beremoved. To remove eonstraint, theeNAME construct removeshe last
constraint labeled NAME.

The RCKAGE specification language is used to expresform ofsoftware structurgraphs ofsoftware
applications. Such graphs represent the implementation alternatiMesnodularstructure of the
application. Attributes are visible on the graptd can beised as parameters fower-level components

in the graph. Likewise, constraint€an restrict theselection of components included as subgraphs of
module instancewithin embedded composite implementatior3ther systems use file systestructures

to organizesoftware applicationgind theirimplementations, but our specification language explicitly
states and manipulates this structure.

7 The Software Manufacture

The process ointegratingsoftware components is known asaftware manufacturgl3]. A software
manufacture is thetep-by-step process slnthesizing new software artifacts from existing ones by
applying tools available in an execution environment. The available tools includengage translators

and integratiormechanisms installed in an environment. séftware manufacture for an application
specifies how to build a product from given set of components. These components include source files,
executables, data files, or even executing services.

7.1 Software Manufacture Graphs
In our first solution to the factorial problem, weoposedhat theFORTRANand Ccomponents could be

integrated via translatioand a Cwrapper. Based othe directedacyclicgraph inFigure 3, ongossible
process to perform the integration could be
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1. Translate the FORTRAN code into C
2. Compile all C source code into object code
3. Link all object code into an executable

since these stepsbeythe partial ordespecified bythe graph. Any ordering of integration stephat
obeysthe partial order is valid.Many configuration managemetdols exploitthis partial orderthat
exists within integratioprocesses. Ayraph thatdepictsthe partial order ofteps necessary iotegrate
software components into a product is callesbfiware manufacture graphThe graptspecifiesthe steps
necessary to build an application from a given set of componentpaatiad order. Eacimode in agraph
corresponds to an actighat performs a single step in the integratiprocess. A manufacturgraph
proceeds from left to right with the raw components as input on the left and the final product(s) as output.

7.2 Abstract Software Manufacture Graphs

We introduce theconcept ofthe abstract software manufacture grapbh characterize the integration
processes available ithe environment. In any environment, the availaoels dictatethe types of
software manufacturgraphs that aréegal, i.e., thosethat represent valid integratioprocesses. We
characterize the general form of these graphs as abstract software manufacture graphs.

We characterize the abstract form of legal manufacture graphs through the use of production rules. Figure
10 depicts an abstract form thie manufacturgraph inFigure 3. In Figure 10, we relabel thedes in

Figure 3 with production rule numbessid the transitions withbject types Theleaf nodes orthe left

side of thegraph represent primitivebject types irthe environment. Theseay or maynot correspond

to source filesand can beassociated with other artifacts the system,e.g., ports,sockets, memory
addressesand services. Object typebave associated attributésat identify such properties. For
example, arfmain is an object typehat represents &ORTRAN source filewith an execution entry

point. Thefmain object typehas aFILE attribute associated with tihat specifiesthe source file in the
environment. Thémain object also specifies &NTRYattribute for the program entry point.

Nodeswithin the graph ardabeled with production rulethat correspond to procedurdbat utilize
environment tools. For example, the rule

cobj O cfunc

specifies a method for producingcabj objectfrom a singlecfunc object. This corresponds to a
special case dhe "c.0 " suffix rule in MAKEFILES. Production rules in abstract software manufacture
graphs are similar tthose found in attributgrammars: théeft side of a rule represernitse targetwhile

the rightside is a list of the components from which the target is construdiéde symbolswithin
attribute grammarsobjects inproduction rules also have attributasd actionsthat manipulatehese
attributes to produce an integration.

Each environmendgpecifiesits own uniquesoftwareintegrationprocesses iterms of a set of production
rules. The production rules used in Figure 10 are

1. exec O cfmobj cobjs
2. cfmobj g cfmain

3. cfmain d fmain

4. cobjs O cobj cobjs
5. cobjs O

6. cobj O cfunc

These rules form &grammar"for legal software manufactugraphs in an environment. For example,
the graph inFigure 3 is a legal software manufactgmphaccording to the production rulebove.

20



fmain fortran | cfmain compile cfobj
to C pie——

cfunc cobj exec
" compile : " link/load
f2c_wrap [: cobj

compile 4’

Figure 10: An abstract software manufacture graph for the factorial example

Unlike suffix rules inMAKEFILES or IMAKE procedures, production rules relate thels available in an
environment to integratioprocessesi.e., sets of related rules)Every environment can characterize its
legal manufacture graphs via production rules. New tools are leveraged by adding new rules.

We canderive aconcrete software manufacture gragtven collection of primitiveobjectsand aset of
production rules. This is thieasic approach dfoftwarepackaging: determine a means of integrating
compatible components based on availafilegrationprocesses. Developers spectiig objects, but they
do not specify the production rules. These are writtand installed in an environment lsystem
administrators. They areaccesse@nd shared by allevelopers in amnvironment. Theyxhange when
tools are added oremoved fromthe system. Developemiust be aware afbject typeq(i.e., leafnode
types inthe manufacture graphbut this is an improvementver having to remembeplatform-specific
methods as iMAKE or procedures as iMAKE. In the next section, we expldtee specification obbjects
within application structures that are independent of programming environments.

8 Maps

When the packageselects goarticular set of implementatiorisr all modules in a structurgraph, the
selected leaf nodes (i.e., primitive implementations) comprise an implementation of the entire application.
This selection is calledr@nderingof the application in aexecution environmentThe internahodes of

a structure graplserve only toorganize the applicationhoices, constraintgnd connections. If we
"flatten” a structurgraph and map adliased connections into connectidietweerthe leaf nodesthen

the connectedyraph that remains alled theapplication graph An application graph contaimsly the
selected primitive implementation components and their direct interconnections.

During the integratioprocess, nathe packagingrocessthe direct connections, callédidges between
actual components may need to be built between diverse compolmptementing a bridge is similar to
backpatching ambjectfile: the link editor connects thases of functions ttheir definitions by filling in
machine addressefor subroutine jump instructions. In a distributed, heterogeneous application,
backpatching is performed by various tothat need information about implementations such as entry
points, ports, and other resources used by a component in order to generate amagtodr code.Thus,

the packageproduces an externatoss reference file, callednaap so thatsuch toolscan readilyaccess
such information. For example, a stub generatmm determine the properties of entry points to a
component for which it needs to generate stubs during integration.

In Appendix 2, thevakerILE produced byhe packager generates file wrapper.c ~ from thefile Map
that isproduced byhe packager. The progracgenis a stub generatohat produceghe wrappercode
given the node numbers in the applicatigraph corresponding to th&ORTRAN and C primitive
implementations. All nodes ithe software structurgraph areassigned numbers. Tistub generator
uses these numbers to determine which connections need to be implemented.cdee, the node "5"
corresponds to thenternal numberfor the fmain implementation andode "7" corresponds to the
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cfunc implementation. The argument "-tBllowed by one omore numbers tells th&tub generator to
produce code foall connections between nodesabd 7 in theMap file. This is how the stub code is
produced to adapt the callifact into a call tofact

Production graphs do na#xplicitly describethe interconnectiondetween components, but at the
boundary betweethe structureand manufacturegraph we camlerivethe application grapthatcontains

all the relevant direatonnections. The bindindgetween interface ports of moduleghin the structure
graphcreates a mappinigetweenthe ports of primitivenodes athe leaves, i.ethe connections of the
application graph. If the packager is able to create a valid manufgcayt, italso produces map that

contains the interconnectiobstweerall packaged components. A map israss-reference lighat can

be used by integration tools to construct bridges, like stubs, between components. The map in the factorial
example consists of a single connection ftbwn client's factorial port to the server's factorial pdrhis

map can beused by a codgenerator to producéhe wrapper.c code. Since stuland wrapper
generators rely on the map, it may be included as an object in the production rules that is always available.

A mapenables tools like stub generatorsatmessnformation aboutind implement thenterconnections
between componentauch like a linkeditor backpatchesbject code in homogeneoagplications. Our
approach is extensibleecause futurentegrationtools can read the maps to determhmawv toimplement
interconnections. In our environment, we have built several btige that rely on maps to generate
stub specifications from maps for several protogotduding SunRPC [14]and Polylith [15]. We are
currently working on stub generators for CORBA [31] and NIDL [17].

9 The Rule Specification Language

The integration rulegescribethe abstract form of the legal manufactgraphs in an environment, but

they donot perform the actual integration. With each rule,associate actionthat containcommands
thatinvoke the proper integratiotools. Oncehe packager determines a valid manufactnaph, the
resulting graph igraversedand theactions associated with each nodethe graph areexecuted. The
traversal process is similar to the second-pass of a compiler traversing a parse tree built by the first pass.

The rulespecification language is describedly in [18] and has changesignificantly since [1], but we
present a brief descriptidrere. A rule specificatiofile is similar to a grammar ilYacc [19]. Each rule
specifies a productiowith a single left-hand-side iteland aset of zero or more right-hand-side items.
Items on the right-hand-side of a ruteay benon-terminals thatorrespond to other rules trey may
correspond to the names of implementation object typesftean , cfunc , rpcsvc ).

Each rule alsdhas anassociated set of actions. Actioae contained withibraces{...} and may be
interleaved with thebjects onthe right-handside of a production rule. An action in the packager is
similar to a semantic action in an attribute gramnfeor instance, the rul®r producing acobj object
from acfunc object (rule #6 above) is augmented with an action

cobj cfunc
[ (OBJS) $1.FILE:r".0"]

%$1.FILE:T.0: $1.FILE
% cc -c $1.FILE
%
|3

that produces the output lines

factorial.o: factorial.c
cc -c factorial.c
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in the resultingmAkeriLE. Many different types oEommands can besedwithin actions including
conditionals, loops, constrain@and attribute assignments. Attributes of primitive implementation items
on the right-hand-sideay be accessed inmaanner similar toracc: its position number othe right-

hand-sidefollowed by a"." and theattribute name. Special filtersay be used tstrip file extensions
(e.g.,;r ).

Actions that occur between items othe right-handside of a productiorare executedduring the

packaging processThe last action of a production rulwever, is special: it is only executedhé rule

succeedsind isincluded in thesoftware manufacturgraph, i.e. during the traversal of thenstructed
manufacture graph. When thdole graph is built, thepackager traverses tiggaph andexecutes these
final actions.

The clause "[ (OBJS)..]" in the aboverule specifies a synthesizeattribute. Inherited attributes and
constraints arescoped orthe manufacture graplbut synthesized attributes must be explicitly stated at
each rule. For example in the rule

cobjs : cobj cobjs
[ (OBJS) $1(0OBJS) $2(0OBJS) ]
$1 # execute actions in the cobj subtree
$2 # execute actions in the cobjs subtree
}

the value ofthe OBJSattribute of both items is concatenated togetheyiatd the list of names of all
object files in a subtree of the manufacture graph.

Rule files are shared by all developers in an environment. It jelitef a systenadministrator to update
rule files andkeepthem current. When lenew tool is purchasedts capabilities should be expressed in
terms ofobject typesand additional rules. Aull rule file is shown in Appendix 1. A sample output
MAKEFILE based on these rules for the factorial solution is shown in Appendix 2.

10 Related Work

We have presented tHeasic concepts of softwangackaging thatuild on prior conceptsincluding
softwaremanufacturing andnodule interconnection languages (MILThe nextsections discuss related
work in softwaremanufacturing, heterogeneoarsd distributed systemsnd configuration languages in
general.

10.1 MAKE

The mostwell-known toolthatautomates theoftwareintegrationprocess based on software manufacture
graphs is thdJNIX MAKE program [20]. Given a description of the dependeniete/een files in an
application,MAKE invokesthetools needed to build ampplication. It determines tteequence in which
tools are used to build an application.The software developer is responsible for specifying the
dependencies between filasad thesteps needed to rebuild a file if one of its dependents is changed.
These specificatioare stored inMAKEFILES. The partial order in &AKEFILE specification is based on
course-grain changes to files, i.e., ifila is updatedthendependent targets must be updated as well in
order to maintairconsistency.Othersystems existhatbase updates on mdiiee-grain changes, but the
basic principle of such tools is to maintain an invariant condition on the program configuration.
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The UNIX mAKE programallows designers tepecify softwarananufacture graphs in order to automate
the rebuilding of products should one or more of its components change. DependenpigsemLa are
specified agelationshipsbetweentargets and dependents Both targetsand dependents correspond to
files. Targetanay be dependents other targets. Thisstablishes thpartial ordetbetween components.
Each command in &AKeFILE is a list of commands (one per lin@y rebuildingthe target from the
dependents. If one or more of the dependents change (iféde dateand time is latethan thetarget),
then thecommands arexecuted. Ifthe target is a dependent of another targeen execution of
commands continues according to the partial order specified by thenexEELE.

In aMAKEFILE, the lines

.C.0:
cc -c $*.c

specify asuffix rulethatspecifiesthatany file named wittihe extension ".c" can be translated intlle
with the same name with the extensioai' by usingthe cc tool (the C compiler). Such rules anéten
implicitly defined by each execution environment. séffix rule is abstract in theensehat it applies to
all files of a particular type specified by a file extension, ecg., Such rules are limited in theibility to
express dependencies and the integration capabilities within an environment.

If MAKEFILE works in one environment, inay not work in other environments. One of the major
problems withmAkE is portability. MAKE was originally designed tmaintaincomputer programs, but it
has been extensively used fport andbuild programs across execution environmentSrrors are
commonplace when portingoftware manually viamAKEFILES. There are manylifferences between
programming environments: compilers, IPC mechanidifespaths, and installatioaptions. Developers
are forced to modify MAKEFILES directly because obuch differencesand include implementation
alternatives based on platform-specific features. Macros allesgate portability problems, but they are
statically declareédndglobally scoped othe MAKEFILE andcomplex to use iharge applications.Suffix
rules also helpecause thegre defined bythe local environment, but such rulage limited to simple
dependencies.

10.2 IMAKE

A better approach to portability is promoted by thieke tool [21]. The IMAKE ultility is a tool that
handles portability problems by leaving itttee execution environment to define integration procedures.
An IMAKEFILE is a portable configuration "program"” that invokes these procedwass is implemented
using the Qpreprocessothat expands the procedure calls imake production rules. For instance, the
following is anIMAKEFILE that integrates our FORTRAN and C components:

Eachexecution environment defines ibsvn proceduresi.e., in alocal.imakefile. This file contains
implementations fointegration procedures. Given these procedared anIMAKEFILE, the IMAKE tool
produces avMAKEFILE customized fothe target environment. Although the implementatiomeake is
via the C preprocessor, idllows integrations to bespecified independent of targeexecution
environments. It halseen used successfullytime distribution of the Xvindow system [22] across many
execution environments. Whileake dependency rulesay be specified in angrder,IMAKE procedures
must be invoked isome sequence because some procedures depend on maghes declared by other
procedures.

File inclusion mechanisms withimAKEFILES and IMAKEFILES provide a means tgpecify platform-
independent configurations. By assigning targets to predefined macmsyetopercan include a
common set of rules as definedthg system. Irthe case oMAKE, standard macros are assigwetlies
that parameterizpredefined rules.This approachhowever, is limitedbecausemultiple rules based on

24



lists of targets are nggossible orlimited. This isdue to thefact that macro expansion is static and
prevents the use of more complicated constructs such a list iterations and complex conditionals.

Like IMAKE, the software packager also relies on system-dependésgration "rules" but the major
difference lies inthe ability of the packager to infer integratiatepsrather tharstating theprocedures

explicitly. IMAKE was developed fgoortinghomogeneous software products betwleardware platforms

anddoesnot easilyhandleheterogeneous integrations. It cannot irtfer integratiorsteps based on the
types of components, but relies on the developer to invoke the proper integration procedures.

10.3 Program Changes

A major problem with usingpols likemake andIMAKE is handling programevolution. If a component is
changed, themake can rebuild the target product. On the othand, if theinterface of a component

changes or a component is added or removed, then the dependency relationships between components may
change. In many casdhjs means that theaKeriLE must also be altered. Botirke andIMAKE were

designed to maintaistaticdependency structures. Theymimt handle updatingependencies themselves

that resultfrom changing gross software structures. High-level configuration decisiars drastically

change the nature of an integratiprocess. For example, if we decide to reimplentéet Driver
component in C in the factorial example, then we can rewriteAREFILE as

factorial: driver.o factorial.o
cc -0 a.out driver.o factorial.o

.C.0:
cc -c $*.c

Similarly, new toolseffectthe types of possibléntegrations in an environment. If we introduce an C-to-
FORTRAN translator (i.e., a hypothetical tool), @@ configure the application to take advantagéhas
new capability byaddingnew production ruleshat characterize thisew integrationprocess. A new
interprocess communications facility may alémpact integrationprocesses. Such changes to
configurationsand environments occur frequently in many environmdrgsauseapplicationsand their
supporting platforms evolve with the introduction of new technologies.

One of the major advantages abftware packaging is theability to accommodate software
reconfigurations without having t@specifythe integratiorprocess for a productThis is a significant
gainoverexisting methods where reconfigurations require drastic changes to integrations. \Wedthve
software packaging to produsekEeFILE specifications automatically and show hsmall reconfiguration
changes produce large changemIAGEFILE specifications.

10.4 Other Manufacture Graph-Based Tools

Other tools that employ dependency-basedethods for building software applications includeake

[23], GNUMAKE [24], SHAPE [25] and bIN [26]. Some provide more sophisticatathnipulation of
macrosand all employ file inclusion mechanisms or platform-dependent rules. All of thests,
however, require the explicit use of integration procedures that depend on the configuration characteristics
of an application. Thelevelopermust specify the software manufacturgraph explicitly in order to
integrate an application. Mechanisms ligeffix rules and IMAKE procedures automatie building
process, but there is no relationship between rules and procedures in these systems.

We have seerthat changes to the structure of an application differences between execution

environments can determine the integrapoocess for an applicationThis means that theanufacture
graphfor an applicationcan changdrom environment to environment. #an also changeduring
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program development.Our approach relies on these of an inference engine to derive manufacture
graphs automatically. Like IMAKE, the software packager relies on eaehvironment tospecify its
available integratiomprocesses.Our approachhowever, differs becaugée rulesdescribethe abstract
integration processes not just the disjoint integration procedures available in an execution environment.

Suffix rules inMAKE, for example, are a simple forms of this abstraction. For example, the suffix rule

.C.0:
cc -c $*.c

statesthat any file written inthe C programming language can d¢mmpiled into anobjectfile. The
extension 't " is a conventiorthat identifies thefile to be acertaintype of component: a source file
written in C. We have extended this notion to include complex relationships between types of components
and the integration processes in execution environments.

10.5 Module Interconnection vs. Object-Oriented

The RACKAGE specification language is a module interconnection languagesaitfeunique features,
namely, theability to depict choices of implementations. Many configuratimanagementpols present
similar organizations ofoftware structuresising hierarchicalfile systemswith enhancements for
handling alternatives.For exampleNMAKE depends on a standadirectory structure foiorganizing
product implementation alternatives. INTERCOL [27] presensgralar structure with implementation
choiceswithin the configuration language. Our approach is similat,thechoice of implementation for
a component is not specified explicitly in the structure, rather it is left to the packager.

Many programmingsystemssupport the separation of interfaged implementation toeduce coupling
within programs. This separati@iows designers to concentrate on distinct subparts of a problem. As
long as the interface of a component remains fixedsg®ciated implementation is irrelevanatwther
developer using the interface. Thitowsprogrammers tavork independently of onanother andsolate
changes to implementations. The separation greatjuces couplingwithin programs. Coupling
increases the likelihoothat smallchanges will propagate extensivelWthin a program. Thisncreases

the chance for errors and inconsistencies if done manually.

Object-orientecprogramming promotethe separation of interfa@nd implementatiorbut it presents a
single-implementation model. An interface specification foobjectlists methods defined ke object.

An interface is relatively independent of its implementation. Excepsicaissually forpragmatic reasons
like performance (e.g., member function implementatemgprivate variables definedithin C++ class
definitions). Most object-oriented systems are homogeneous; all components are implementsahire the
language anéxecutablesre designed texecutewithin a single address space. Furthermore, there are
no “‘choices" becauseach interface has a singdssociated implementationThis is sufficient in a
homogeneous environment, but lacks extensibility to heterogeneous configurations.

Another major differencdetween object-orienteaind module-oriente programminigvolvesthe use of
indirection. Traditionally, an interface defines a set of resources (e.g., methods) definedtjgcan
References tother objectsare embeddedvithin objectimplementations. This isufficient because all
objects have similar implementations (i.e., programming language, runtime support). A module interface,
however, describethe resources definedndused by a module. Referencesotbher modulesre always
indirect [28]. This strictly encapsulates a software component. iMalicit form of coupling ispossible
becauseall interactions areexplicitly specifiedthrough themodule interface. A module describes a
software component as a self-contained entity [27]. Module-origmtegrammingsubsumes object-
oriented programmin@ecausehe correspondence between a module interfambitsimplementations is
one-to-many. Module-oriented programmiatiows developers to explicitly address interconnections
between providerand users of resourcesThis additionallevel of indirection permitshe rebinding of
clients to services that were never intended to be used together thus enhancing software reuse.
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10.6 Remote Procedure Call

Several projects have attempted to solve the problem of integrating heterogeneous, distributed applications
through theuse of remote procedure call (RPCJhis technology ismportant tosolvethe mechanics of

the integration problem, but @toesnot solvethe largerproblem of simplifyingthe integrationprocess.

Indeed, the software packager relies on stub generator tools to bridge applications.

The HORUS system [2%elps generatBPC stubs for mangrogramming languagesdcommunication
protocols without reimplementing the stub generator in each execution envirort@&itSconsists of a
driver program thaemploys twoschema files to achieveystemindependence: a machine-dependent
schemaand a languagechema. Thetub specification is given asput andHORUS produces stubs
based orthe features of the target machiaad programming languageHORUS is ageneric stub
generator but the developer is responsible for using it and writing the stub specifications.

The HRPC projec{30] takes a similar approach $tub generation adORUS,but also employsuntime
mechanisms to resolve differendastween RPC protocols. Applications in a distribusgdtem may
employ different RPC protocolé.e., Sun,NIDL, Courier). HRPC applications may connect to any of
these services by dynamicathgtermining whichprotocol to use atuntime. Thestubsare notstatically
generated, but dynamically configuredhis hasperformance implications, but once connections are
established, the HRPC system is fixedil somechange in theervice occurs. Onagain, thedeveloper
must write the stub specifications in the HRPC language, invoke stub generatioanddiak theHRPC
library into the application.

Another project related tBPC isthe CommorObject Request Brokekrchitecture (CORBA) [31under

the direction of th@bjectManagement Group (OMG) --- a consortium of vendors trying to standardize
software componentand thedesign of bridgedetweenthem to enable easier integratiofCORBA
provides for more complex interactions between programs than procedure calls, HORKLS itdefines

an Interface Description Language (IDthat is language andystemindependent. In general, the
runtime design ofZORBA is closelyrelated to the notion of aoftware busas discussed ithe next
section.

In general,RPC toolsare necessary to bridge heterogeneous, distributed applications, but they do not
make programming such applications easi&evelopersmust determine whatools to use. If the
configuration of an application changes, the integratimy change drastically. Thdeveloper must
reintegrate the application by applying differéatls. The software packager eliminatekis step by
determining the integratioprocess automatically based e types of components. It may employ RPC
mechanisms as describedtims section. If a configuration changes, theveloper simply repackages the
application.

10.7 The Software Bus

A improvement on remote procedure call involaesling alevel of indirectionbetween components in a
heterogeneous, distributed system. Instead of components being directly connected to one another as client
andserver, a third-partprocess routes messages from one proceasdther. If aprocess produces a
message on a pothe router directs thmessage to receiver(s) according to sonapping thaimay be

statically or dynamically specifiedThis module-based approach is more flexiberausearticipants in

the system may conandgo. For instance, in the middle of a session, the spreeess may be replaced

with no affect onotherprocesses.The router mightjueueimpending messages tioe server while a new

server enrolls in the overall configuration.

This model of integration, known ahe software busmodel, views softwarecomponents as pluggable
modules into a communications backplane. It provides a great defiéxddility in distributed,
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heterogeneous environments by adding a level of indirectitarisactiondetweerruntimecomponents.
Thebus routes messages betweanticipants and queuesdelivered messages for future delivefiyhis
approach can implement remote procedure call as well as asynchronous interactions styles.

If there exists auntime environment in which all the primitivemponentsan operatethen we can

build andexecutethe application. If weview each connection as a messapannel, then theommon

runtime environmenivould include a communicatiomechanism to realize these channels. The task of

the software packager is tchoose compatiblenplementations of modulesnd derive a viableruntime
environment thasupports theexecution ofall constituentmodulesand theirinterconnections. The
software packager determines whethemot an appropriateoftware bus exists based tre types of
componentsand the integrationiools in the target environment. In thgrocess ofintegrating the
components, they may need to be adapted and additional components such as wrappers and stubs may be
introduced.

Several projectincluding the Portable Common Toolkit Environment (PCTE) [#jlylith [15], PVM
[33], CONIC [34], CORBA [31]Field [35],and thePortable Common Runtime (PCR) environment [36]
arebased orthe software buspproach tsoftwareintegration as a means of encapsulasonffware and
promoting reuse.

11 Applications

We have usedhe software packager in mantarget execution environments smlve problems of
heterogeneityand distribution when porting or configuring an application. Tokowing is alist of
possible applicatiorareas forsoftware packaging. Details of each area canfdaend in [18]. Our
approach is extensible to many areas of integration problems in comgysiegns. Weummarize these
uses and some additional application areas for this technology.

111 Portability

We have beemery successful iising thesoftware packager to create customized makefiles for different
programs including aA2KAGE specification for the packager itself. Each environment supplies &leule

for the software packager to generate platform-specifitegration programs (e.g.MAKEFILES).
Furthermore, by including alternate implementations of components and structuring an appligatdn so
only afew components must be reimplementddyelopersan minimize theost ofporting applications
betweenenvironments. Softwarpackaging allowslevelopers targanize applications in this fashion
independent from thevay anapplication is integrated. Current methods do not separate these tasks and
embed the structure of a program within the integration steps.

11.2 Heterogeneity

We have usethe software packager tategrate program components written in different languages with
compatible interfaces including @G++, Ada, Tk/Tcl, Lisp, theUNIX shell, andFORTRAN. By
describing these components as modaled connecting ports of modules instances hasallowed our
students ta@volve anapplication by substituting new implementations for componamtirepackaging

the application. Often, they are unaware of the integratigosthat aregeneratedecause thegiealonly

with the logical architecture of the application when making any changes to an application.

11.3 Distribution
Like the heterogeneous components, distributed componleatexecute on different physical processors
at runtime in an application neédidges to connect with one another. TExecution location is simply

viewed as arattribute assigned to a module instancethdf locations are differerfibr componentsthis
restricts the packager to create an integration solution based on a distributed communication mechanism.
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We have built many distributed applications using #wdtware packagethat rely on different
communication mechanisms to integrate programs including SureRE®olylith. The capability of
SunRPCand Polylith stub generatotools are described in software packager rulasd leveraged
automatically in a target environment if needed to integrate an application. Pplaasecallfor the
incorporation of other distributed programming mechanisms into our packageforu@®RBA, Field,
and NIDL stub generators.

11.4 Parallel Programming

We also usethe software packager to descrilparallel applications in which instances mbdules
represent separate tasks both in distributed environments (e.g., via Pdyldhfor lightweight
processing (e.g., Ada tasks). In these cases, asynchronous aodreekports are parts afmodule
interface descriptions. Future plans includedbiity to incorporate RAPIDE [37] implementations for
components to build discrete event simulations with a rich set of attributed module port types.

11.5  Configuration Management

We associate a VERSIOABttribute with each primitive implementation ¢tassify different versions of
code asalternate implementations. Constraints within a paclspgeificationand production rules may
restrict thechoices of implementations this with the same version. Thalows us to associate a
distribution name with many different component versiegm&l nothave to keeptrack of which
component versionareneeded for garticular distribution of theoftware. The distribution name is an
attribute assigned in th&oot compositeimplementation. This can be changed in #reKAGE
specification for an applicatioand therrepackaged to producenvaKerILE specific forthat distribution
release of the application.

11.6 Genericity

So far, the targedbject typehasbeen an executable objectlledexec (see Appendid), but weare not
limited to this situation. Librarieslocumentsanddatabasesan be packaged asll. For example, we
have package rules for librariesdDVI files. In addition, wecan package an existirgxecutable with
input andoutput files to construct a single test in a test suite. Different "implementatiotis® wiput
andoutput components represent different test cases. Constraitits orput andutput ensur¢hat the
appropriate cases are matched together.

12 Future Directions

Our experience with theoftware packagenasshownthat it is auseful toolthat elidesthe integration
problems in heterogeneous, distributed environments. It is extensitilat$oture integratiortools can
be leverage when developed. We hplans toexplore many avenues biftegrationgivesthis tool. We
briefly summarize these areas.

Incremental integration When a component is reimplemented, the entire package must be regenerated
and the integration must dauild from the primitive implementations. An incremental approach is
needed to reduce the costs of repackaging an application.

Graphical specification Developers who have useddRAGE specifications have remarkehat it is
useful to visualize the structure graph when designing their applications, but the textual |alogsaget
providethe appropriat@iews. Severagraphicaltools have been developed to constsioiicture graphs
through direct manipulatiotbbut none of theséas been satisfactory to dateThe reasondor this is
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primarily that the structure graph formalism itself was under evolution. Agnaghicaltool is needed to
provide the visualization required by programmers.

Portability metrics  Since well-structured applications are modularized in suctway that
reimplementation of a compondmas alow impact on thesystem as a whole, we sugg#sit portability

can be quantified through measurements on software structure graphs. Such metrics would support claims
of portability with values and give programmers guidelines during development regarding their design.

13 Conclusions

Programming-in-the-large has lorigeen a vision of manyprogrammerswho have wished to reuse
existing software components by combinithgm together in a modular fashion, lame stopped by the
barriers of heterogeneity. Configuration programming languagd$PC mechanisms allowevelopers
to combine existing softwarato new applications at a modular level, but they relyttos programmer’s
knowledge ofthe componentypes and thecapabilities of integrationiools. The result is that the
integration itself is a complex programming task that is just as difficult as programming-in-the-small.

Software packaging promotes the view of a software application as a modular collection of subsystems and
alternate implementations. Thigew is practically applicablend inagreement with curremxperiences

of software developers. Most software produtist areportable and configurable in heterogeneous,
distributed environments have multiple implementations and are structured in a modular fashion to isolate
dependencies with the design.

It is difficult to show that a programming language is abstract intiddiconvenience tthe programmer
is increased. Convenience is defiheasely interms ofhow "terse” it is fotthe programmer tepecify a
solution. Thebest wecan hope to do is showhat anew approach is more convenightin existing
methods. Software packaging reduties amount ofvork programmers must do to integrate applications
in heterogeneous, distributed environments. By dealing with connections abstretiisingsoftware
packaging to infer how to implement the connectiand séect compatible implementationthe software
developer reducethe amount ofwork necessaryand reusesthe bridges built by othedevelopers.
Softwarepackaging also allows disparate applications tedraposedand speedghe synthesis of new
applications. Previous methods providedch of the integratiotechnology, but lefthe programmer to
specifytheuse of these tools explicitly. Softwgrackaging relates sudbols tothe integratiorprocesses
in an environment.

Software packaging embraces diversignd allows developers focus on composidifferent programs
while ignoring incompatibilitiesthat exist betweenthem. This is important when changing the
configuration of an application: porting it tew platformsaddingnew implementations of components
or featuresand distributing itacross a network of computer§ his transparencypreviously available
only in homogeneous software developmentiironments, is of most value when prototyping new
applications from existing software. Oftgrptotype applications consist ekisting programshat have
been "patched" together. tlie prototype is viable, components may be reimplementethatthey are
more tightly bound together in a runtime configuration.

Finally, software packaging represents an extensible framework for softwegeation. Itdoesnotfavor

any particular environmenprotocol, orprogramming language. Such mechanisms must be available,
however, in order tintegrate any applicationThis permitsspecialized tools to coexiandbridges to be

built when more general standards do not exist.névgstandards antbols aredevelopedthe packager
rules can be updated and existing applications can be repackaged.

In many environments, it is difficult to integrate heterogeneous, distrilsofedarenot because we lack
the technology to do so but becaute integrationprocess is complex. An applicationay be a
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patchwork of connections between different systems. If one compdmeemges (i.e., is reimplemented or
moved toanother hardware platform), this ha®found impact on theuntime organization of the entire
system.

The software packager isdependent of the particulegchnology used tmtegrate applications. tioes,
however, coordinatéhe use of these technologiesd associated toolsThe packager determines which

tools are necessary based on a descriptiontloéir integration characteristics. tffers seamless
integration todevelopers of software systems whose comporaetprogrammed in different languages,

are distributed, or whose application must be ported to many execution environments. It is independent of
any specifiantegrationtechnologyand extensible to include new technologi€ur use ofthis approach

in our research has many current applications and possible future directions.
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Appendix 1 A Sample Rule File

exec

cfmobj cobjs

{

%t

%# This Makefile produced automatically by
%# Software Packager. DO NOT EDIT.

%t

LIBDIR = -L/ust/lib

%FLIBS =-IF77 -I77 -Im

%

%$1(APPNAME): $1(0OBJ) $2(0OBJS) wrapper.o

% cc -0 $1(APPNAME) $1(OBJ) $2(OBJS) wrapper.o $(LIBDIR) $$(FLIBS)
%
Y%wrapper.o: wrapper.c
% cC -C wrapper.c
%
Y%wrapper.c: Map
% f2cgen -o wrapper.c $1(NUM) -d $2(NUMS)
%
$1
$2
cfmobj : ’ cfmain

[ (APPNAME) $1(APPNAME) |
[ (NUM) $1(NUM) ]
[ (OBJ) $1(FILE)r".0"]

%$1(FILE):r.o: $1(FILE):r.c
% cc -¢ $1(FILE):r.c
%
$1

cfmain : fmain

[ (APPNAME) $1.APPNAME |
[ (NUM) $1.NUM |
[ (FILE) $1.FILE ]

%S$1.FILE:r.c: $1.FILE

% f2c $1.FILE
%
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cobjs : ; cobj cobjs
[ (NUMS) $1(NUM) " " $2(NUMS) ]
[ (OBJS) $1(0OBJ) $2(0BJS) ]
!
$2

}
!

cobj : ’ cfunc
[ (NUM) $1.NUM ]
[ (OBJS) $1.FILE;r".0"]

i

%%$1.FILE:r.o: $1.FILE
% cc -c $1.FILE
%

k

Appendix 2 A Sample Output Makefile

#

# This Makefile produced automatically by
# Software Packager. DO NOT EDIT.

#

FLIBS =-IF77 -lI77 -Im

a.out: driver.o factorial.o wrapper.o
cc -0 a.out driver.o factorial.o wrapper.o -L/usr/lib $(FLIBS)

wrapper.o: wrapper.c
cC -C wrapper.c

wrapper.c: Map
f2cgen -o wrapper.c5-d 7

driver.o: driver.c
cc -c driver.c

driver.c: driver.f
f2c driver.f

factorial.o: factorial.c
cc -c factorial.c
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